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Abstract--A one-dimensional mathematical model of the heat transfer during evaporation of the liquid 
from the liquid-vapor interface located in a porous structure into the dry region between the interface and 
the solid heated surface is developed for the case when the vapor flows through the narrow dry porous 
zone along the heated surface towards the vapor channel. The model predicts the location and shape of 
the liquid-vapor interface, the overall heat transfer coefficient, and the heat fluxes which can be recognized 
as critical fi)r the evaporator. The numerical results are presented for the case of the miniature evaporator 

for electronic components cooling. 

II. INTRODUCTION 

Evaporators which are capable of withstanding high 
heat fluxes, for example larger than 100 W cm -2, are 
of great interest for electronic components cooling 
systems. The mosl: promising evaporator design is the 
so-called "inverted meniscus" type which has been 
considered by Raiff and Wayner [1], Feldman and 
Noreen [2] and Solov'ev and Kovalev [3]. These 
authors carried out some experimental and analytical 
investigations of the performance characteristics of 
the inverted meniscus type evaporators. However, 
some critical mechanisms related to the formation of 
the vapor blanke~; in the porous structure along the 
heated solid surface were not simulated numerically. 
In order to predict the critical heat flux and effective 
heat transfer coeJticients in the evaporator, the fol- 
lowing mathematical model has been developed. The 
model includes the following interconnected problems 
which are treated simultaneously in the frames of the 
numerical analysis. 

(1) Heat transfer during evaporation from a pore. 
(2) Heat transfer and vapor flow in the dry region 

of a porous structure with the stable side boundary, 
the location of which depends on the operational con- 
ditions. 

(3) Heat conduction in a solid fin (or wall) with a 
non-uniform heat sink on side surfaces. 

These interconnected problems are considered in 
detail in the following sections. 

2. PHYSICAL MODEL OF THE INVERTED 
MENISCUS EVAPORATOR 

Schematics of the two configurations of the charac- 
teristic elements cf the inverted meniscus evaporators 

tThis work was completed at Wright State University, 
Dayton, OH 45435, U.S.A. 

are shown in Fig. 1. In the first configuration (Figs. 
1 (a) and (b)), the heated triangular fin is inserted in 
the porous plate and sintered with it in order to pro- 
vide good thermal contact. In the second con- 
figuration (Fig. l(c)), the heated wall is fiat. With 
a small heat flux, evaporation of the liquid, which 
saturates the porous element, can take place exclus- 
ively from the surface of the porous body into the 
vapor channel as shown in Fig. 1 (a). However, with 
extremely high heat fluxes, which are significantly 
more interesting for the industrial applications, the 
existence of the stable vapor blanket inside the uni- 
form porous structure along the heated solid surface 
was anticipated (Raiff and Wayner [1] ; Solov'ev and 
Kovalev [3]; Wulz and Embacher [4]), as shown in 
Figs. 1 (b) and (c). Note, that one more operational 
regime can possibly exist, which is unstable and 
referred to by Ku [5], where the vapor bubbles form 
at the heating surface and migrate until vented into 
the vapor channel. In the present paper only the case 
of the stable vapor blanket is considered. In this case 
evaporation takes place into the dry region of the 
porous structure at the liquid-vapor interface, the 
location of which shifts depending on the operational 
conditions. The heat is conducted to this interface 
from the heated surface through the dry region of the 
porous element, and the vapor flows mainly along the 
solid surface through this region towards the vapor 
channel. The vapor flow is provided by the capillary 
pressure gradient due to the difference in the curvature 
of the menisci along the liquid-vapor interface. While 
the vapor flow takes place in a comparatively narrow 
porous passage, the liquid with the same total mass 
flow rate (steady state) is filtered perpendicularly 
through the entire porous element to the liquid-vapor 
interface, and the pressure gradient in liquid along 
this interface is negligible in comparison to that in 
vapor. This assumption can be justified in the case 
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A cross-sectional area 
a, b, Ci constants 
Cp specific heat at constant pressure 
hfg latent heat of vaporization 
h heat transfer coefficient 
K permeability 
K curvature 
k thermal conductivity 
ke~ thermal conductivity of dry porous 

structure 
kw thermal conductivity of solid wall or 

fin 
length of the vapor blanket 
pressure 
bulk liquid pressure near the liquid- 
vapor interface 
vapor pressure near the liquid-vapor 
interface 
~vpv dy/3v, mean vapor pressure for a 
given x 
disjoining pressure 
heat flux 
gas constant 
radius of curvature of the meniscus 
pore radius 
characteristic roughness size 
local radius for a given s (Fig. 2) 
f~vx~/Vv, Reynolds number for the 
vapor flow 
coordinate along the solid-liquid 
interface 

T temperature 
To temperature of the solid surface at 

x = 0  
total 
depth of the fin penetration into the 
porous plate 
thickness of the solid wall (Fig. 1 (c)) 
area-averaged vapor velocity along the 
x coordinate 
~o V Uv dy/3v, mean vapor velocity along 
the x coordinate for a given x 

Lvb 
P 
Pt6 

pv~ 

Pv 

Pd 
q 
Rg 
Rmen 
Rp 
Rr 
r 
Rev 

t 

tpen 

tw 
Uv 

fly 

NOMENCLATURE 

Vv 

Vv6 

W 

x , y  

area-averaged vapor velocity along the 
y coordinate 
vapor blowing velocity (normal to the 
liquid-vapor boundary) 
half-width of the evaporator 
characteristic element 
coordinates (Fig. 1). 

Greek symbols 
accommodation coefficient 

7 half-angle of the metallic fin 
3, liquid film thickness 
6v vapor blanket thickness 
e cos [arctan (d3v/dx)] 
0mon meniscus contact angle 
0 . . . . .  in minimum wetting contact angle 
~o porosity 
~0s surface porosity 
# dynamic viscosity 
v kinematic viscosity 
p density 
cr surface tension. 

Subscripts 
e evaporator 
eft effective 
1 liquid 
loc local 
max maximum 
men meniscus 
min minimum 
o outlet (x = Lv0 
p pore 
pen penetration 
s solid-liquid interface 
sat saturation 
v vapor 
w wall 
3 liquid film free surface. 

when the maximum pressure drop in liquid over the 
wetted region of the characteristic element in con- 
sideration is negligible compared to the pressure drop 
in vapor in the dry region, and it allows description 
of the heat transfer in the vapor blanket in a one- 
dimensional (1D) approximation as shown below. 
The validity of the discussed assumption can be 
checked after the numerical results for the pressure 
drop in the vapor blanket have been obtained, as 
explained in the section concerning the numerical 
results. 

The thickness of the vapor blanket, 3v, increases 
with the heat flux which can lead to the increase of 

the thermal resistance of the element. In the situation 
when 6vJx_0 is of the same order of magnitude as the 
minimum thickness of the porous element (see Fig. 
1 (b)), the vapor can penetrate into the liquid channels 
which can obstruct the liquid supply of the evaporator 
and result in the dry out. The value of the heat flux at 
which the dry out takes place can be considered as 
critical. 

The operating parameters of the evaporator depend 
upon the heat and mass circulation in the entire system 
(for example in a heat pipe) with the evaporator in 
consideration. In the present model the physical situ- 
ation for the characteristic element is determined by 
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Fig. 1. Schematics of the modeled elements of the inverted 
meniscus evaporators : (a) with the triangular fin for low 
heat fluxes ; (b) with the triangular fin for high heat fluxes 

and (c) with the flat heated wall for high heat fluxes. 

(Pl~ + 2a/R . . . .  i n )  and Rmon,r~, = Rp/cos 0 . . . . .  in. In- 
equality (1) characterizes the value of the solid-liquid 
superheat. Rm .... is related to the fluid circulation in 
the entire device. For  the case of the evaporator with 
the forced liquid supply it can be set R . . . . .  >> R . . . . .  in 
because in this case the pressure drop in liquid is not 
due to the capillary pressure. For  the case of the heat 
pipe, R . . . . .  can be defined from the pressure balance 
for the whole heat pipe at the steady state 

2u/R . . . .  = Apv + Ap, + App a (2) 

(provided that R . . . . . . .  + o0) where Apv is the pressure 
drop due to the vapor flow along the heat pipe, Ap~ is 
the pressure drop due to liquid flow along the liquid 
channels of the heat pipe, and App., is the pressure 
drop due to the liquid filtration through the porous 
plate in the evaporator section (and in the condenser 
section if it also contains the porous plate). That 
means that the capillary pressure drop presented in 
the left hand side of equation (2) supports the fluid 
circulation in the heat pipe while the capillary pressure 
drop 2a(1/R . . . . .  m-  1/R . . . . .  ) provides the vapor flow 
in the vapor blanket. Since these two pressure drops 
can be of the same order of magnitude, the existence 
of the vapor blanket in the inverted meniscus evap- 
orator is important for the analysis of the heat pipe 
with evaporator of this type. At high heat fluxes the 
liquid-vapor interface doesn't touch the solid super- 
heated wall, 6v]x=0 > 0, and the liquid meniscus radius 
is supposed to reach its minimum, R . . . . .  in, at least at 
one point along this interface. Note that analytical 
investigation by Solov'ev and Kovalev [3] was restric- 
ted by the case av]x=0 = 0. The vapor blanket thick- 
ness, 6v, depends on the values of the mentioned par- 
ameters (p~a, To, and R . . . . .  ), and can significantly 
affect the local effective evaporative heat transfer 
coefficient, he~. It can be anticipated that in the heat 
pipe with the considered evaporator an increase in 
the heat input causes a decrease of R . . . . .  and the 
corresponding growth of the thickness of the dry zone. 
Therefore, the thermal resistance of the evaporator 
should increase with the heat flow rate in the heat 
pipe. This trend has been observed in the experiments 
by Solov'ev and Kovalev [3]. Note that the steady- 
state situation is modeled when no boiling of the liquid 
occurs at the liquid-vapor interface, and the phase 
change due to evaporation of the liquid at this inter- 
face takes place. 

the three parameters: the pressure in the liquid near 
the interface, p~6, the temperature of the solid surface, 
To, at x = 0, and the liquid-vapor meniscus radius at 
the end of the wtpor blanket (x = Lv6), R . . . . .  . Note 
that the superheat of the fin exists at the following 
condition : 

To :> Tsat(Pla+2~r/R . . . . .  in) (1) 

where the subscript "sat" denotes the normal satu- 
ration temperature corresponding to a pressure 

3. HEAT TRANSFER DURING EVAPORATION 
FROM A PORE 

Evaporation of the liquid occurs from the surface 
of the liquid menisci situated at the l iquid-vapor inter- 
face. Schematic of the cylindrical pore and liquid men- 
iscus is shown in Fig. 2. The description of the heat 
transfer during evaporation from a pore is given here 
with the two following main assumptions. 

(1) The temperature of the solid-liquid interface Ts 
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Fig. 2. Schematic of the evaporation from a cylindrical pore. 

can be considered constant along the s coordinate for 
small s. 

(2) The curvature of the axisymmetrical liquid- 
vapor surface of the meniscus is defined by the main 
radius of curvature K = 2/Rme n and hence is inde- 
pendent of s. 

The validity of the second assumption has been proved 
numerically by Khrustalev and Faghri [6], where it 
was shown that this assumption could give an error 
less than 5% when calculating the overall heat transfer 
coefficient during evaporation from a capillary 
groove. Since heat transfer during evaporation from 
thin films in a pore is similar to that in a capillary 
grove, this assumption can be justified for the present 
analysis. 

The local heat flux through the liquid film due to 
heat conduction is 

T,-T~ 
ql(S) ----- k I -  (3) 6j 

where the local thickness of the liquid layer 61 and 
the temperature of the free liquid film surface T~ are 
functions of the s-coordinate. T~ is affected by the 
disjoining and capillary pressures, and also depends 
on the value of the interfacial resistance, which is 
defined for the case of a comparatively small heat flux 
at the interface, qa, by the following relation given by 
the kinetic theory (Carey [7]) : 

q, = - k 2 _ - ~ ) ~  Lx/~ v / ~  j (4) 

where p~ and (P,~t)a are the saturation pressures cor- 
responding to T~ and at the thin liquid film interface, 
respectively. 

The relation between the saturation vapor pressure 
over the thin evaporating film, (Psat)6, affected by the 
disjoining pressure, and the normal saturation pres- 
sure corresponding to T6, p~t(T6), is given by the 
extended Kelvin equation (Carey [7]) : 

F.(,Ps~t),~-P,at( T~,) + pa-aKl  
(Psat)6 = Psat(T6) exp L p,n,T, J" 

(5) 

Equation (5) reflects the fact that under the influence 
of the disjoining and capillary pressure, the liquid free 
surface saturation pressure (Psat)* is different from nor- 
mal saturation pressurep,a,(T6) and varies along the thin 
film (or s-coordinate), while Pv6 and Tv are the same for 
any value ofs. This is also due to the fact that Ta changes 
along s. While the evaporating film thins approaching 
the point s -- 0, the difference between (P~at)6 given by 
equation (5) and the pressure obtained for a given T6 
using the saturation table becomes larger. This difference 
is the reason for the existence of the thin non-evap- 
orating superheated film, which is in equilibrium state 
in spite of the fact that T6 > Tv. 

Under steady state conditions, q] = q6, and it fol- 
lows from equations (3) and (4) : 

,5,/2~ ~ hr~ F pv~ (P=')~I 
Ta=  T ~ + ~ , t ~ ) ~ L ~  ~ - ~ d  (6) 

Equations (5) and (6) determine the interfacial tem- 
perature, T6, and pressure, (P~a,)~, for a given vapor 
pressure, pv~(X), temperature of the solid-liquid inter- 
face, Ts, and the liquid film thickness, 6~(s). 

As the liquid film thins, the disjoining pressure, pd, 
and the interracial temperature, T6, increase. Under 
specific conditions, a non-evaporating film thickness 
is present which gives the equality of the interracial 
and solid surface temperatures, T6 = T~. This is the 
thickness of the equilibrium non-evaporating film 6o. 
For water the following equation for the disjoining 
pressure was used in the present analysis (Holm and 
Goplen [8]) : 

Pd = OIRgT~ In a (7) 

where a = 1.5336 and b = 0.0243. From equations 
(5)-(7), the following expression for the thickness of 
the equilibrium film is given : 

6o = 3.3 {aeXp ] ._ sat(T~)-pv6xflTs/T l [ - o (  + a K  

L piRg T~ 

as 

+ I n k ~ x / ~ ) j j  " (8) 

The total heat flow through a single pore is defined 

~ T~- T~ 
Qp = I - -  2nr ds 

Jo 6,/kl 

= | - - 2 ~ R m e  n 
~o 61/kl 

Rp 
x sin [arctan ~22 21 ds. (9) 
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The surface of lhe pore wall is totally covered with 
microroughnesses, where the characteristic size varies 
from, for example, R~ = 10 -8 to 10 -6 m. Apparently, 
the thin liquid film formation can be affected by some 
of these microroughnesses. The following approxi- 
mation for the liquid film thickness was given by 
Khrustalev and F'aghri [6]: for 60 ~< 61 ~ 60+ R~ and 
Rr>> 60 

6, = 6o + R ~ - x / ~ : { - s ~ -  R,.o. 

+x/R2e.  +s2 + 2Rme.ssinOr (10) 

where for surface with microroughness Of = 0, and the 
liquid film thickness in the interval 6~/> 6o + Rr is 

6j = R~ + 60 -- R .... + (R2o, + s 2 + 2Rm~,S sin Omen) 1/2. 

( l l )  

For the smooth surface model, Of is the angle between 
the solid-liquid and liquid-vapor interfaces at the 
point on s where the disjoining pressure and dK/ds 
become zero. Note that for small values of the accom- 
modation coeflicient (for example ~ = 0.05) the value 
of R~ has not affected the total heat flow rate through 
the liquid film (Khrustalev and Faghri [6]). 

The interfacial radius of curvature is related to the 
pressure difference between the liquid and vapor by 
the extended Laplace-Young equation : 

Pv~-Pla = ~ ¢p2 \p, -- 

where v~ is the wpor  mean blowing velocity specified 
for a given meniscus, and ~o is the porosity which is 
needed in this equation because the evaporation takes 
place into the dry region of the porous structure. Tem- 
perature of the saturated vapor near the interface, T~, 
is related to its pressure by the saturation conditions : 

Tv = T~t(Pv~). (13) 

Then the heat transfer coefficient during evaporation 
from the porous surface is defined as 

¢psap (14) 
~e'P ~g 2 (T~ - Tv) 

where ¢p~ -- Ap/At is the surface porosity which is the 
ratio of the surface of the pores to the total surface of 
the porous structure for a given cross-section (in this 
paper it is assumed that qh = q~). 

4. HEAT CONI)UCTION IN THE SOLID FIN OR 
WALL 

Since it can be anticipated that the temperature 
drops in metallic fin or wall are much smaller than 
those across the dry zone of the porous structure 
because k~ >> ken, the heat conduction in the solid fin 
or wall is considered using a 1D approach. For the 
case of the flat wall (Fig. l(c)) it means that dTw/dy 
is not included in the consideration. The heat con- 
duction in the triangular metallic fin is described by 

the following equation (Fig. l(b)), which was 
obtained as a result of energy balance on a differential 
element consideration : 

d2Tw + dTw 1 k~ffcos7 
dx 2 - ~ - X - X x + ( T ~ - T w ) x r ~ n 7 - O  (15) 

where T~ is the local temperature of the porous struc- 
ture at the liquid-vapor interface location. Similarly, 
the heat conduction equation for the wall in Fig. 1 (c) 
is 

d2Tw +(Ts--Tw) k e ~  + qo = 0. (16) 
dx 2 t~6~(x)kw t~k~ 

The boundary conditions for equations (15) and 
(16) are 

Twlx=0 = To (17) 

dTw x=0 dx = 0. (18) 

For the second configuration qo is the uniform heat 
flux at the outer surface of the heated part of the fiat 
wall. The value of qo and the functions 6~(x) and T~(x) 
should be given by the results of the vapor flow and 
heat transfer in the dry region solution considered 
below. 

5. VAPOR FLOW AND HEAT TRANSFER IN THE 
DRY REGION OF THE POROUS STRUCTURE 

The local heat flux due to heat conduction across 
the dry region of the porous structure from the solid 
surface to the liquid-vapor interface where evap- 
oration takes place is 

Tw ( x )  - T~ ( x )  
q,o~(X) = kefr (19) 

6v(x) 

Equation (19) is valid for the case kv<< ke~ and 
Cp,v(Tw-Ts) << hrg. Hence, the mean velocity of the 
vapor flow for a given x along the solid surface is (the 
mass and energy conservation balances) 

l:fl av(x) = 6v(x)hfgp qlodX) dx 

keff fx Tw(x) -- T~(x) 
/ dx (20) 

- 6v(xShfgpv Jo 6v(x) 

where av(X) is the mean vapor velocity along the x- 
coordinate. The modified Darcy's equations for the 
vapor flow in both directions through a porous struc- 
ture where the value of 0.55 is used for a dimensionless 
form-drag constant, Nield and Bejan [9], are 

0.55 2 Opv Pv u~(x) - pvU~ (x) (21) 
~x K 

Op~ #v , , 0.55 2 
~y = ~ v A y ) +  - ~ p v V v ( y )  (22) 
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where u~ and G are the area-averaged vapor velocities. 
The corresponding continuity equation is 

~gu~ ~Vv 
c~- + ~ y  = 0. (23) 

It should be noted that the Darcy's equation is semi- 
empirical and describes the flow with the uniform 
velocity profile, therefore, it is assumed in the present 
analysis that u~ does not depend on y. Taking the 
definitions of the mean vapor pressure and axial vel- 
ocity for a given x, p~ and G, into consideration (see 
the Nomenclature) and integrating equation (21) over 
y, the following equation can be obtained for the 
gradient of the mean vapor pressure along the x-coor- 
dinate 

0.55 2 
dp~ _ P~ - ~ Pvav (x). (24) dx ~ Uv (x) -- 

Since the situation when 6v << Lvb is considered, the 
vapor pressure drop across the vapor blanket is much 
smaller than that along the x-coordinate. At the 
solid fin (or wall) surface v~ly_0 = 0, and at the 
liquid-vapor interface Gly=a=Vvae where e =  
cos [arctan (d~Udx)] is the cosine of the angle between 
the y coordinate and the normal to the liquid-vapor 
interface and v~ is the blowing velocity (normal to the 
liquid-vapor interface) • 

Tw-T~ 
We, = k ~ - ~  . (25) 

Equation (25) implies that the total amount of energy 
transferred from the heated solid surface to the liquid- 
vapor interface by the heat conduction across the dry 
porous zone, is spent on vaporization of the liquid. 
Since the axial velocity profile is nearly uniform, it 
follows from equation (23) that v, = Vv~eY/6v. Inte- 
grating equation (22) twice over y for a given x and 
implementing the definition of p~, the difference 
between the vapor pressure near the liquid-vapor 
interface, pv~, and the mean vapor pressure of the 
vapor flow, p,, for a given x can be estimated as 
follows 

I/UvbF.pv 0.55 2 2~ 
Pv~-P~ = 6~1~-\ + ~ p v V v ~ e  /" (26) 

4x /K / 

Combining equations (20) and (24), finally we have 
for the vapor filtration flow pressure gradient along 
the x-coordinate : 

dPv vvkaf ~ w -  T~ 
dx 

d x -  6 ~  j0 - ~  ~ / 

o.55 F ko. v 
pvx//~ Lfvhfg j0 ~ -  dxJ (27) 

The boundary condition for the equation (27) follows 
from equations (12), (25) and (26) 

pvvv~ix=0 1 
Pvlx=0 = P l ~ +  Rmenlx=o l- tP 2 

ko,m~(Tw--TJl,=o 0.55p~ 
- - - ( ~ v ~ 6 6 v ) l x = 0 .  (28) 

3Khrgpv 4 , ~  

Now, the equation for T~ should be derived. The local 
heat flux at the liquid-vapor interface due to the evap- 
oration of the liquid is : 

qloc(X) = [T~(x)-- Tv(x)]ho,p(x). (29) 

Combining equations (19) and (29) because of the 
steady state situation in the consideration, the 
expression for the local temperature of the porous 
structure at the l iquid-vapor interface location is : 

T~ (x) = Tw (x) + he, p (x) T~ (X)~v (x ) / /~  (30) 
1 -I- he,p (x) Ov (x)/kefr 

Substituting equations (25) and (26) into equation 
(12) and differentiating it, the following equation for 
the radius of the meniscus curvature can be obtained 

dx dx \p, 

h r ~  

keer#v [" (dTw dT~\ de] 

055pv 2 2 _ r s ) ( d r w  drs]  

2 d~vq 2 de)  
- ( T w -  T,) ~J+2e&(Tw- T,) dxx~ (31) 

with the boundary condition 

Rmenlx= 0 = C O (32) 

where Co should be chosen from the constitutive con- 
dition for the minimum value of  the meniscus radius 
along the liquid-vapor interface 

min {Rmen(X)} = Rp/COSOmen,mi n. (33) 

Now, the condition of the liquid-vapor interface 
mechanical equilibrium should be considered which is 
necessary in order to find its location or 6v(x). In the 
analysis by Solov'ev and Kovalev [3] it was assumed 
that 6v(X) = const- x °33 which is not quite satisfactory 
because of  some reasons. For  example, for the hypo- 
thetical situation when starting from a definite point 
along the x-coordinate, xl, there is no evaporation 
from the liquid-vapor interface, it should be 
6v Ix>x, = const, which condition is not satisfied by the 
discussed expression. Wulz and Embacher [4] have 
modeled the vapor flow in the uniform zone of the dry 
porous structure. The thickness of the vapor zone was 
determined as 0.1 mm at qm,x = 17500 W m -2 by 
comparing the calculated temperature difference 
between the fin top and the phase boundary with the 
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value determined by experiment, using the simpler 
vapor zone model. Chung and Catton [10] have con- 
sidered the problem of steam injection into a slow 
water flow through porous media, where the interface 
location was also unknown. They have found " . . .  that 
the interface can be idealized as a stream line as far 
as the momentum equations are concerned." In the 
present paper the concept of a streamline is used 
indirectly as explained below. For the asymptotic case, 
K --* oo, p~ --* 0, irLtegrating Euler's equation along a 
streamline gives 

pvU~ p~V~v 
Pv + ~ - -  + ~ = Pv 1~= 0 (34) 

where the terms containing u~ and Vv 2 correspond to 
the inertia effects due to acceleration of fluid. In the 
present analysis the vapor flow through a porous med- 
ium is described by Darcy's momentum equation. 
However, it is assumed that since the velocity profile 
of the vapor flow along the x-coordinate, Uv, is nearly 
uniform, equation (34) can be used for the description 
of the inertia effecl:s at the liquid-vapor interface con- 
cerning acceleration of the vapor. It can be anticipated 
that the liquid-vapor interface can be stable provided 
it has the shape which eliminates the influence of the 
inertia effects due to acceleration of the vapor flow 
on the vapor pressure near this interface. While the 
steady-state situation is analyzed, the liquid pressure 
along the interface: is constant, and the pressure losses 
in the vapor flow in both directions due to friction 
and solid obstacles are compensated by the capillary 
pressure, the vapor pressure gradient along the stable 
interface due to these inertia effects should be equal 
to zero. Since the velocity profile of the vapor flow 
along the x-coordinate is nearly uniform, it follows 
from equation (34) 

pva~ 2 2 
pvVv~ 

+ - const. (35) 
2 2 

Note that equation (35) is not used for the fluid flow 
in the porous medium but describes the inertia effects 
at the adjustable liquid-vapor interface while the 
momentum equations for the vapor flow in the porous 
medium are concerned. Equation (35) is necessary in 
order to find the equilibrium location of the liquid- 
vapor boundary. Substituting equation (20) and (25) 
into equation (35) and differentiating it after some 
rearrangements ~'¢es the equation for the vapor blan- 
ket thickness, 6v : 

d26v {5~(Tw- T~)2esin ( a r c t a n ~ ) [ l  + k ~x J 2 

rr'rw-r  ~/drw dr?~] 
= (Tw--T~)LJo ~ - d x - F ~ e  ~ dx}J  

d6v '~ Tw_ T~ dx 2 
dx [(J~ ~ - ~  ) +eE(Tw-T~)2 (36) 

where all of the l:erms containing (Tw--T~) can be 

calculated in the numerical procedure using the func- 
tions Tw(x) and Ts(x) determined at the previous iter- 
ation. The second-order differential equation (36) 
should be solved with the two boundary conditions 
for the variables by and d6v/dx. The first boundary 
condition is 

(~VlX=0 = C l .  (37) 

C1 should be chosen from the constitutive condition 
that it is the value of 6vlx=0 which provides the sat- 
isfaction of the following boundary condition 

Rmenlx=Lv b = R . . . . . .  (38) 

The second boundary condition is due to the sym- 
metry of the considered element (Fig. 1). Since at the 
point x = 0 dTw/dx = O, dTs/dx = 0, and dv.,~/dx = 0 
because of the physical reasons, it follows from equa- 
tion (25) 

dSv 
dx x=0 = 0. (39) 

Thus we have six main variables (or unknown func- 
tions f(x)) : Pva, Pv, R .... Ts, Vv~ and 6v which should 
be found from the six equations : (12), (25), (27), (30), 
(31) and (36). These six equations should be solved 
along with those presented in the previous sections for 
variables he.p(x) and Tw(x). Note that the value qo 
which is needed for equation (16) now can be found 
a s :  

1 rLvb Tw(X) -- T~(x) dx. (40) 
qo = wJ0  k~ff 6v(X) 

For the first configuration, qo is the heat flux in the 
solid fin corresponding to the porous structure-vapor 
channel plane. The heat flux on the outer surface of 
the evaporator (and the corresponding effective heat 
transfer coefficient) can be recalculated taking the 
geometry of the evaporator into consideration. 
Although the vapor leaving the dry zone of the porous 
structure is superheated, it is convenient to relate the 
local effective heat transfer coefficient to the vapor 
saturation temperature because Cp,~(Tw-T~)<< hfg. 
Thus the local effective heat transfer coefficient cor- 
responding to the point x = Lvb (outlet of the vapor 
flow) is defined as : 

1 (%~ Tw ( x )  - T~ (x )  
heff W(T,~-- Tv)o J0 | k~, ~ ]  dx. (41) 

6. NUMERICAL TREATMENT 

The numerical procedure was organized as a 
sequence of the steps : 

(1) the initial approximation for the functions 
5v(X), ho,p, Tw(x) and Rm~(X) was chosen: 
5v(X) = C, + C2x, Tw(x) = To, Rme.(x) = R . . . . .  i. 
(Co + C3x/tp~) and ho,p = C4 ; 
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(2) the function p~6(x) (actually pv6(X)-p]a) was 
calculated from equation (12) with Vv6 = C5 ; 

(3) the function Tv(x) was calculated from the satu- 
ration table ; 

(4) the function T~(x) was calculated from equation 
(30); 

(5) the function Vv6(X) was calculated from equa- 
tion (25) ; 

(6) equations (27), (31) and (36) with the boundary 
conditions (28), (32), (37) and (39) were solved using 
the Runge-Kutta procedure and new functions 
p'v(X), l/R'm~n(X) and 6'~(x) were found; 

(7) equation (15) (or equation (16) for the second 
configuration) with the boundary conditions (17) and 
(18) was solved for the variables Tw and dTw/dx using 
the Runge-Kutta procedure and new function T'w(X) 
was obtained ; 

(8) new functions p'~ and T'~(x) were calculated 
from equation (12) and the saturation table ; 

(9) equations (5)-(13) were solved for every point 
on x and new function h;,p(X) was found ; 

(10) the values ofqo (equation (40)) and h,~ (equa- 
tion (41)) were calculated ; 

(11) every previous function, f ,  was replaced by 
the new one using new function,.f~, according to the 
following formula : 

f ( x )  + Ai[f (x)' - f ( x ) ]  ~ f ( x )  

where A~ belong to the interval from zero to unity; 
and steps (4)-(10) were repeated many times until the 
convergence of the solution has been reached (about 
90-150 iterations were required to gain the converged 
solution for every of the functions: max 
{ I f ~ - f l / f }  <~ 0.001) and 

(12) the smaller value of C'~ was set and the steps 
(1)-(11) were repeated several times with different C] 
until the boundary condition Rmen[x=Lv  b = R . . . . .  has 
been satisfied. 

The results were obtained with constant ther- 
mophysical properties corresponding to the satu- 
ration temperature T~,t(pl6) = 100°C. 

7. RESULTS AND DISCUSSION 

In order to verify the assumption that the liquid 
pressure along the liquid-vapor interface, PI6, can be 
considered constant, the following estimation for the 
pressure drop in the wetted porous structure was made 
for all of the numerical results with the calculated 
values of qo : 

Appen, I - -  tpen#l qo (42) 
K hfgPl 

and Appen,l values were compared with the calculated 
pressure drops in the vapor blanket along the fin 
surface, Apve,,v = Pvlx-0-Pvlx-L~. For the presented 
numerical results the values of the (App~,,,l/App,n,O were 
less than 0.5% which proves the validity of the 
accepted assumption. This also means that solving the 
corresponding 2D problem for the liquid pressure in 
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Fig. 3. Heat transfer coefficient during evaporation from the 
porous surface : (a) vs liquid meniscus contact angle (for a 

single pore) and (b) along the heated fin surface. 

the wetted porous structure (Cao and Faghri [11]) 
simultaneously with the problem solved in the present 
paper would not cause significant changes in the pre- 
sented numerical results. In that case the pressure in 
liquid along the liquid-vapor interface would be a 
comparatively weak function of x, p~6(x), which would 
result in only a slightly different menisci radii dis- 
tribution along the x-coordinate, Rmen(X) ,  because the 
vapor pressure distribution in the dry zone of the 
porous structure, Pv(x), is the predominant function 
for the considered situation. 

The numerical results were obtained for the first 
configuration (Fig. 1 (b)) for the case of the miniature 
evaporator: ? = 30 °, tp~, = 0.2 mm, Rp = 20 /~m, 
R r ~ 0 , 0 2  # m ,  0 . . . . .  in ---- 33 ° (Stepanov et al. [12]), 

= 0.05 (Paul [13]), ko~ = 10 W m -~ K -1, k,  = 438 
W m i K ~, ~0=0.5, (Os=0.5, K = 0 . 5 x l 0  -~2m 2, 
pj6 = 1.013 x 105 Pa, and the working fluid was water. 

Since the longitudinal circulation of the fluid in the 
heat pipe which determines the value of R ... . .  was 
not considered in the present analysis, the numerical 
results were obtained for several fixed values of R . . . . .  • 

The maximum values of Reynolds numbers for the 
vapor flow in the dry zone, Rev = ~vx/K/vv, in the 
numerical experiments were up to 250, which means 
that the quadratic term in the modified Darcy's equa- 
tion was predominant. Moreover, the vapor flow in 
the pores at high heat fluxes could be turbulent. Note 
that for the turbulent regime the macroscopic equa- 
tions (21), (22) and (24) are still applicable (Nield and 
Bejan [9]). 

The data in Fig. 3 show that the heat transfer 
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coefficient during evaporation from the porous 
surface, he,p, significantly depended on the curvature 
of the liquid meni scus (Fig. 3 (a)) and, hence, changed 
along the liquid vapor interface (Fig. 3(b)) because 
the curvature of the liquid menisci changed along this 
interface. For  smaller pore sizes the values of ho.p are 
larger because of' the larger relative surface occupied 
by the thin films. 

The thickness of the dry zone increased along the 
x-coordinate as shown in Fig. 4(a), and the value of 
C] = 6,lx=o increased as R . . . . .  decreased for a given 
superheat value, To - T,l~=0. For the larger values of 
~vlx=0 variation of the vapor blanket thickness along 
the x-coordinate becomes weaker. The liquid menisci 
radii changed along the l iquid-vapor interface so that 
the capillary pressure gradient provided the vapor 
flow in both directions in the dry zone, Fig. 4(b). The 
average vapor pressure drop along the x-coordinate 
reached several thousand Pascals, Fig. 4(c). The mini- 
mum physically reasonable average pressure in the 
vapor blanket, i~v ~P~6, can occur in the situation 
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Fig. 4. Performance characteristics of the modeled evap- 
orator element along the heated fin surface : (a) vapor blan- 
ket thickness ; (b) liquid menisci radii and (c) mean vapor- 

liquid pressure drop. 
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Fig. 5. Performance characteristics of the modeled evap- 
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of the fin surface and of the porous structure at the liquid- 
vapor interface and (b) local heat flux across the vapor 

blanket. 

when the l iquid-vapor meniscus radius is still greater 
than zero. The temperature drops at the solid heated 
surface were significantly smaller than those cor- 
responding to the porous skeleton at the l iquid-vapor 
interface, Fig. 5(a). The real superheat of the liquid, 
T~-Tv, which could initiate the boiling, was sig- 
nificantly smaller than the superheat of the heated 
solid surface : T s -  Tv < T , -  Tv. The local heat fluxes 
across the dry zone had their maximums at the point  
x = 0, Fig. 5(c). 

The data presented in Fig. 6 were obtained for the 
case R . . . .  > 8Rmo.,min which corresponds to the evap- 
orator with the forced liquid supply. The thickness of 
the dry zone at the point x = 0, C1, and the superheat 
of the solid surface at the point  x = Lvb, which is the 
outlet of  the ~,apor flow, (Tw-TOo, increased pro- 
gressively with the heat flux, qo, while the effective 
heat transfer coefficient, herr, decreased as shown in 
Fig. 6. In  the situation when the min imum thickness 
of the porous element could be 100 #m, at the heat 
flux of qo = 200 W cm -2 while C] = 100 #m, the dry 
out of the evaporator could occur due to the pen- 
etration of the vapor into the liquid channels. If  the 
temperature drop on the evaporator was restricted by 
20 K because of the technical reasons, the maximum 
corresponding heat flux could be no more than 
qo = 200 W cm -2. For the case of the heat pipe with 
a heat load corresponding to the heat fluxes in con- 
sideration, the value of R . . . . .  would be significantly 
smaller than 8R . . . . .  m which could result in the larger 
thickness of the dry zone for the same qo- The increase 
of the permeability of the porous structure resulted in 
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Fig. 6. Influence of the heat flux on the performance charac- 
teristics of the modeled element ; (a) vapor blanket thickness 
at x = 0 ; (b) effective heat transfer coefficient and (c) the 

superheat of the fin surface. 

the decrease of  the thickness of  the vapor  blanket for 
the same operational conditions and, hence, could 
provide higher critical heat fluxes. 

For  extremely high heat fluxes, q,oc, when the tem- 
perature drop (Ts -Tv)  is large, boiling of  the liquid 
at the l iquid-vapor interface can o~cur which can 
cause instabilities at the l iquid-vapor  interface. How- 
ever, boiling of  the liquid does not  necessarily result 
in the dry out of  the evaporator  of  this type. Since 
qo > q,o~ due to Lvb > HI, the triangular geometry of  
the solid fin helps to postpone boiling and, therefore, 
can be advantageous compared to the case of  the fiat 
wall in the second configuration shown in Fig. 1 (c). 
In other words, the triangular geometry of  the fin 
provides higher value of  the heat flux on the outer 
surface of  the evaporator  which corresponds to the 
beginning of  the boiling of  the liquid at the l iquid-  
vapor  interface. 

8. C O N C L U S I O N S  

(1) The numerical results proved the possibility of  
the existence of  the stable dry zone (vapor blanket) in 

the porous structure along the heated solid surface for 
a definite interval of  the heat fluxes. 

(2) The pressure drop in the vapor  blanket along 
the fin surface with the turbulent vapor  flow in the 
pores was many times larger than the estimated 
pressure drop in liquid over the porous element which 
enabled to assume the liquid pressure to be constant 
along the l iquid-vapor  boundary. 

(3) Two critical mechanisms were observed in the 
inverted meniscus evaporator,  both being related to 
the increase of  the vapor  blanket in the porous plate 
for increasing heat fluxes. The first mechanism was 
the growth of  the evaporator  thermal resistance for 
increasing heat fluxes which could lead to an unac- 
ceptable thermal resistance of  the evaporator  in the 
case when the thermal conductivity of  the porous 
structure was low. The second mechanism was the dry 
out of  the evaporator  which could take place for a 
definite heat flux qmax in the situation when the vapor  
blanket thickness at the fin top was equal to the mini- 
mum thickness of  the porous plate. Thus, for the case 
of  a heat pipe, the dry out of  the inverted meniscus 
type evaporator  can occur before the traditional capil- 
lary limit or the conditions for the beginning of  the 
boiling are reached. 
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